

A linear recurrent sequence (LRS) is a sequence in \mathbb{Z} (or \mathbb{Q}) $\langle u_0, u_1, u_2, \ldots \rangle$ such that there are constants a_1, \ldots, a_k and, $\forall n \geq 0$: $u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \ldots + a_k u_n$.

A linear recurrent sequence (LRS) is a sequence in \mathbb{Z} (or \mathbb{Q}) $\langle u_0, u_1, u_2, \ldots \rangle$ such that there are constants a_1, \ldots, a_k and, $\forall n \geq 0$: $u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \ldots + a_k u_n$.

• e.g. the Fibonacci numbers $(0, 1, 1, 2, 3, 5, 8, \ldots)$

A linear recurrent sequence (LRS) is a sequence in \mathbb{Z} (or \mathbb{Q}) $\langle u_0, u_1, u_2, \ldots \rangle$ such that there are constants a_1, \ldots, a_k and, $\forall n \geq 0$: $u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \ldots + a_k u_n$.

- ullet e.g. the Fibonacci numbers $\langle 0,1,1,2,3,5,8,\ldots \rangle$
- *k* is the **order** of the sequence

A **linear recurrent sequence (LRS)** is a sequence in \mathbb{Z} (or \mathbb{Q}) $\langle u_0, u_1, u_2, \ldots \rangle$ such that there are constants a_1, \ldots, a_k and,

$$\forall n \geq 0: \quad u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \ldots + a_k u_n.$$

- \bullet e.g. the Fibonacci numbers $\langle 0,1,1,2,3,5,8,\ldots\rangle$
- *k* is the **order** of the sequence
- The Fibonacci sequence has order 2 $(F_{n+2} = F_{n+1} + F_n)$

A linear recurrent sequence (LRS) is a sequence in \mathbb{Z} (or \mathbb{Q}) $\langle u_0, u_1, u_2, \ldots \rangle$ such that there are constants a_1, \ldots, a_k and, $\forall n \geq 0$: $u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \ldots + a_k u_n$.

- e.g. the Fibonacci numbers $(0, 1, 1, 2, 3, 5, 8, \ldots)$
- *k* is the **order** of the sequence
- The Fibonacci sequence has order 2 $(F_{n+2} = F_{n+1} + F_n)$

One can write

$$u_n = \sum_{j=1}^k P_j(n) \lambda_j^n \quad \forall n \geq 0,$$

with $P_j(x) \in \mathbb{C}[x]$, where the above data can be read from the recurrence and initial values.

The Skolem Problem

Problem SKOLEM

Instance: A linear recurrence sequence $\langle u_0, u_1, u_2, \ldots \rangle$

<u>Question</u>: Does $\exists n \ge 0$ such that $u_n = 0$?

The Skolem Problem

Problem SKOLEM

Instance: A linear recurrence sequence $\langle u_0, u_1, u_2, \ldots \rangle$

Question: Does $\exists n \geq 0$ such that $u_n = 0$?

This problem has been open for about 90 years.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros of a linear recurrence sequence is semi-linear:

$$\{n: u_n=0\}=F\cup A_1\cup\ldots\cup A_\ell$$

where F is finite and each A_i is a full arithmetic progression.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros of a linear recurrence sequence is semi-linear:

$$\{n: u_n=0\}=F\cup A_1\cup\ldots\cup A_\ell$$

where F is finite and each A_i is a full arithmetic progression.

Various proofs are known:

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros of a linear recurrence sequence is semi-linear:

$$\{n: u_n=0\}=F\cup A_1\cup\ldots\cup A_\ell$$

where F is finite and each A_i is a full arithmetic progression.

Various proofs are known:

- Using *p*-adic analysis
- Using the Subspace theorem

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros of a linear recurrence sequence is semi-linear:

$$\{n: u_n=0\}=F\cup A_1\cup\ldots\cup A_\ell$$

where F is finite and each A_i is a full arithmetic progression.

Various proofs are known:

- Using *p*-adic analysis
- Using the Subspace theorem

Neither is effective

Bounds on the number of zeros

Theorem (Schmidt 2000; Amoroso and Viada 2011)

A non-degenerate linear recurrence sequence of order k that is not identically zero has at most $\exp \exp 70k$ zeros.

Bounds on the number of zeros

Theorem (Schmidt 2000; Amoroso and Viada 2011)

A non-degenerate linear recurrence sequence of order k that is not identically zero has at most exp exp 70k zeros.

An LRS is degenerate if λ_i/λ_j is a root of unity for some $i \neq j$.

Bounds on the number of zeros

Theorem (Schmidt 2000; Amoroso and Viada 2011)

A non-degenerate linear recurrence sequence of order k that is not identically zero has at most exp exp 70k zeros.

An LRS is degenerate if λ_i/λ_j is a root of unity for some $i \neq j$.

Such sequences can be written as merge of lower-order LRS's (e.g., $\langle 1,2,1,2,1,2,\ldots \rangle$).

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For LRS of order \leq 4, SKOLEM is decidable.

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For LRS of order \leq 4, SKOLEM is decidable.

Critical ingredient is Baker's theorem on linear forms in logarithms, which earned Baker the Fields Medal in 1970.

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For LRS of order \leq 4, SKOLEM is decidable.

Critical ingredient is Baker's theorem on linear forms in logarithms, which earned Baker the Fields Medal in 1970.

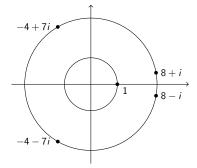
MSTV property: at most 3 dominant roots w.r.t. usual absolute value on \mathbb{C} and at most 2 dominant roots w.r.t. p-adic absolute value.

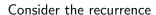
Consider the recurrence

$$u_{n+5} = 9u_{n+4} - 10u_{n+3} + 522u_{n+2} - 4745u_{n+1} + 4225u_n$$

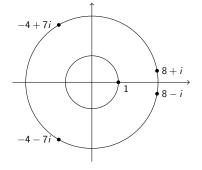
Consider the recurrence

$$u_{n+5} = 9u_{n+4} - 10u_{n+3} + 522u_{n+2} - 4745u_{n+1} + 4225u_n$$

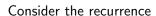




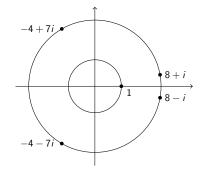
$$u_{n+5} = 9u_{n+4} - 10u_{n+3} + 522u_{n+2} - 4745u_{n+1} + 4225u_n$$



• Dominant roots $(1 \pm 2i)(2 \pm 3i)$



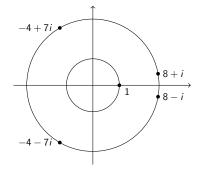
$$u_{n+5} = 9u_{n+4} - 10u_{n+3} + 522u_{n+2} - 4745u_{n+1} + 4225u_n$$



- Dominant roots $(1 \pm 2i)(2 \pm 3i)$
- Each prime above divides exactly two roots

Consider the recurrence

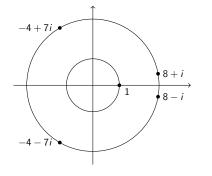
$$u_{n+5} = 9u_{n+4} - 10u_{n+3} + 522u_{n+2} - 4745u_{n+1} + 4225u_n$$



- Dominant roots $(1 \pm 2i)(2 \pm 3i)$
- Each prime above divides exactly two roots
- Empirically: for all $u_0, ..., u_4$ there exists k s.t. $u_n = 0 \pmod{5^k}$ for only finitely many n.

Consider the recurrence

$$u_{n+5} = 9u_{n+4} - 10u_{n+3} + 522u_{n+2} - 4745u_{n+1} + 4225u_n$$



- Dominant roots $(1 \pm 2i)(2 \pm 3i)$
- Each prime above divides exactly two roots
- Empirically: for all $u_0, ..., u_4$ there exists k s.t. $u_n = 0 \pmod{5^k}$ for only finitely many n. Why??

Universal Skolem Sets

A universal Skolem set (USS) is a subset S of \mathbb{N} such that for all linearly recurrent sequences $\langle u_n \rangle$ the set

$$\{n \in \mathcal{S} : u_n = 0\}$$

is computable.

Universal Skolem Sets

A universal Skolem set (USS) is a subset S of \mathbb{N} such that for all linearly recurrent sequences $\langle u_n \rangle$ the set

$$\{n \in \mathcal{S} : u_n = 0\}$$

is computable.

Finite sets are universal Skolem sets.

Universal Skolem Sets

A universal Skolem set (USS) is a subset S of \mathbb{N} such that for all linearly recurrent sequences $\langle u_n \rangle$ the set

$$\{n \in \mathcal{S} : u_n = 0\}$$

is computable.

Finite sets are universal Skolem sets.

"Can one solve the Skolem Problem on the set of primes?"

The first universal Skolem set

The first universal Skolem set

Theorem (L., Ouaknine, Worrell, 2021)

Define $f: \mathbb{N} \setminus \{0\} \to \mathbb{N}$ by

$$f(n) := \lfloor \sqrt{\log n} \rfloor,$$

and define the sequence $(s_n)_{n\geq 0}$, inductively by

$$s_0 = 1$$
 and $s_n = n! + s_{f(n)}$ for $n > 0$.

Then $S := \{s_n : n \in \mathbb{N}\}$ is a universal Skolem set.

The first universal Skolem set

Theorem (L., Ouaknine, Worrell, 2021)

Define $f: \mathbb{N} \setminus \{0\} \to \mathbb{N}$ by

$$f(n) := \lfloor \sqrt{\log n} \rfloor,$$

and define the sequence $(s_n)_{n\geq 0}$, inductively by

$$s_0 = 1$$
 and $s_n = n! + s_{f(n)}$ for $n > 0$.

Then $S := \{s_n : n \in \mathbb{N}\}$ is a universal Skolem set.

The first few elements of ${\cal S}$ are

$$\{1,1!+1,2!+1,3!+1,4!+1,5!+1,6!+1,7!+1,8!+2!+1,\ldots\}$$

or

$$\{1, 2, 37, 25, 121, 721, 5041, 40323, \ldots\}.$$

Fusible numbers and Peano Arithmetic - Jeff Erickson, Gabriel Nivasch and Junyan Xu.

Positive first-order logic on words - Denis Kuperberg.

Inapproximability of Unique Games in Fixed-Point Logic with Counting - Jamie Tucker-Foltz, (co-winner of Kleene Award for Best Student Paper)

Separating Rank Logic from Polynomial Time - Moritz Lichter, (co-winner of Kleene Award for Best Student Paper)

Lacon- and Shrub-Decompositions: A New Characterization of First-Order Transductions of Bounded Expansion Classes - Jan Dreier.

A Logic for Locally Complete Abstract Interpretations - Roberto Bruni, Roberto Giacobazzi, Roberta Gori and Francesco Ranzato.

Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata - Mikolaj Bojańczyk, Bartek Klin and Joshua Moerman.

Universal Skolem Sets - Florian Luca, Joel Quaknine and James Worrell.

Compositional Semantics for Probabilistic Programs with Exact Conditioning - Dario Stein and Sam Staton.

Minimal Taylor Algebras as a Common Framework for the Three Algebraic Approaches to the CSP - Libor Barto, Zarathustra Brady, Andrei Bulatov, Marcin Kozik and Dmitriy Zhuk.

How thick is our set?

How thick is our set?

Our set is not too thick.

How thick is our set?

- Our set is not too thick.
- In fact if $s_n \le x$, then $n! \le x$, so that

$$\#(\mathcal{S}\cap[1,x])=(1+o(1))rac{\log x}{\log\log x}$$
 as $x o\infty.$

How thick is our set?

- Our set is not too thick.
- In fact if $s_n \le x$, then $n! \le x$, so that

$$\#(\mathcal{S}\cap[1,x])=(1+o(1))rac{\log x}{\log\log x}$$
 as $x o\infty.$

Can we do better?

How thick is our set?

- Our set is not too thick.
- In fact if $s_n \le x$, then $n! \le x$, so that

$$\#(S \cap [1,x]) = (1+o(1))\frac{\log x}{\log\log x}$$
 as $x \to \infty$.

• Can we do better?

Highly representable integers

Definition

A **representation** of $n \in \mathbb{N}$ is a triple (P, q, a) such that

$$n = Pq + a$$
,

where

- P is prime;
- $q \in Q := [\log \log n, \sqrt{\log n}];$
- $a \in A := \left[\frac{\log n}{2\sqrt{\log\log\log n}}, \frac{\log n}{\sqrt{\log\log\log n}}\right].$

Let r(n) denote the number of representations of n. We say that $n > 10^{10}$ is **highly representable** if

$$r(n) > \log \log \log \log n$$
.

Highly representable integers: Examples

Highly representable integers: Examples

Example

For example, $n = 10^{1000} + k$ is **highly representable** for $k \in [0, 1000]$ exactly for

$$k \in \{161, \dots, 248\} \cup \{325, \dots, 553\} \cup \{606, \dots, 730\}.$$

Hint: For all the above n we have

$$Q = [6, 15],$$
 $A = [89, 176],$ $\log \log \log \log n \approx 0.52.$

Let S be the set of highly representable n's. Then

- S is a universal Skolem set
- S has positive lower density
- ullet ${\cal S}$ has density one subject to the Bateman-Horn conjecture

Theorem (L., Maynard, Noubissie, Ouaknine, Worrell 2023)

Let S be the set of highly representable n's. Then

- S is a universal Skolem set
- S has positive lower density
- S has density one subject to the Bateman-Horn conjecture

We believe that there are infinitely many n's which are not highly representable.

Theorem (L., Maynard, Noubissie, Ouaknine, Worrell 2023)

Let S be the set of highly representable n's. Then

- S is a universal Skolem set
- S has positive lower density
- S has density one subject to the Bateman-Horn conjecture

We believe that there are infinitely many n's which are not highly representable.

So, this does not yet solve the Skolem problem.

Definition

For a nondegenerate LRS $\mathbf{u} = \langle u_n \rangle_{n \geq 0} \subset \mathbb{Z}$ given by

$$u_{n+k} = a_1 u_{n+k-1} + \cdots + a_k u_n \qquad \forall n \geq 0,$$

let its size be

$$C_{\mathbf{u}} := \max\{k, |a_1|, \dots, |a_k|, |u_0|, \dots, |u_{k-1}|, 12\}.$$

Definition

For a nondegenerate LRS $\mathbf{u} = \langle u_n \rangle_{n \geq 0} \subset \mathbb{Z}$ given by

$$u_{n+k} = a_1 u_{n+k-1} + \cdots + a_k u_n \qquad \forall n \geq 0,$$

let its size be

$$C_{\mathbf{u}} := \max\{k, |a_1|, \dots, |a_k|, |u_0|, \dots, |u_{k-1}|, 12\}.$$

Given a function $f: \mathbb{R}_+ \mapsto \mathbb{R}_+$ and an integer $k \geq 1$, we write

$$\underbrace{f \circ f \circ \cdots \circ f}_{k \text{ times}}(x) = f_k(x).$$

Definition

For a nondegenerate LRS $\mathbf{u} = \langle u_n \rangle_{n \geq 0} \subset \mathbb{Z}$ given by

$$u_{n+k} = a_1 u_{n+k-1} + \cdots + a_k u_n \qquad \forall n \ge 0,$$

let its size be

$$C_{\mathbf{u}} := \max\{k, |a_1|, \dots, |a_k|, |u_0|, \dots, |u_{k-1}|, 12\}.$$

Given a function $f: \mathbb{R}_+ \mapsto \mathbb{R}_+$ and an integer $k \geq 1$, we write

$$\underbrace{f \circ f \circ \cdots \circ f}_{k \text{ times}}(x) = f_k(x).$$

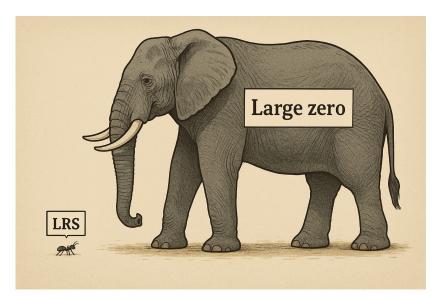
Definition

Given a nondegenerate LRS $\mathbf{u} \subset \mathbb{Z}$, we say that n is a large zero of \mathbf{u} if

 $u_n = 0$ and $n > 2 \exp_6(C_{\mathbf{II}})$.

Example

Example



The set of large zeros of some LRS

The set of large zeros of some LRS

Definition

Let \mathcal{L} be the set of large zeros of some LRS.

The set of large zeros of some LRS

Definition

Let $\mathcal L$ be the set of large zeros of some LRS.

Theorem (L., Ouaknine, Worrell, 2025)

The set \mathcal{L} has zero density. In fact, writing $\mathcal{L}(X) = \mathcal{L} \cap [0, X]$, the inequality

$$\#\mathcal{L}(X) = O\left(\frac{X}{(\log X)^B}\right)$$

holds with any B > 0 for all $X \ge 2$.

• Let X be large and count $n \in \mathcal{L} \cap [X, 2X]$.

- Let X be large and count $n \in \mathcal{L} \cap [X, 2X]$.
- \bullet So, there exists an LRS \boldsymbol{u} which is nondegenerate with

$$n > 2 \exp_6(C_{\mathbf{u}}).$$

Thus,

$$u_n = 0$$
 and $C_{\mathbf{u}} < \log_6(X)$.

- Let X be large and count $n \in \mathcal{L} \cap [X, 2X]$.
- ullet So, there exists an LRS u which is nondegenerate with

$$n > 2 \exp_6(C_{\mathbf{u}}).$$

Thus,

$$u_n = 0$$
 and $C_{\mathbf{u}} < \log_6(X)$.

 \bullet There are very few such $\boldsymbol{u}.$

- Let X be large and count $n \in \mathcal{L} \cap [X, 2X]$.
- So, there exists an LRS u which is nondegenerate with

$$n > 2 \exp_6(C_{\mathbf{u}}).$$

Thus,

$$u_n = 0$$
 and $C_{\mathbf{u}} < \log_6(X)$.

- There are very few such u.
- They all have $k \leq C_{\mathbf{u}} < \log_6(X)$.
- By the results of Amoroso and Viada each such LRS has very few zeros. Namely, at most

$$\exp \exp(70k)$$
.

- Let X be large and count $n \in \mathcal{L} \cap [X, 2X]$.
- \bullet So, there exists an LRS u which is nondegenerate with

$$n > 2 \exp_6(C_{\mathbf{u}}).$$

Thus,

$$u_n = 0$$
 and $C_{\mathbf{u}} < \log_6(X)$.

- There are very few such u.
- They all have $k \leq C_{\mathbf{u}} < \log_6(X)$.
- By the results of Amoroso and Viada each such LRS has very few zeros. Namely, at most

$$\exp \exp(70k)$$
.

Now conclude.

Corollary

Corollary

The set $S = \mathbb{N} \setminus \mathcal{L}$ is a universal Skolem set of density 1.

ullet We conjecture that ${\cal S}$ contains all the positive integers.

Corollary

- ullet We conjecture that ${\cal S}$ contains all the positive integers.
- That is, we conjecture that there is no large zero of any nondegenerate LRS.

Corollary

- ullet We conjecture that ${\cal S}$ contains all the positive integers.
- That is, we conjecture that there is no large zero of any nondegenerate LRS.
- In the rest of the talk, I would like to bring some heuristic arguments to support the above conjecture.

Corollary

- ullet We conjecture that ${\cal S}$ contains all the positive integers.
- That is, we conjecture that there is no large zero of any nondegenerate LRS.
- In the rest of the talk, I would like to bring some heuristic arguments to support the above conjecture.
- More surprisingly, a classical conjecture concerning the distribution of primes seems to have something to do with the above conjecture.

Let $\mathbf{u}=\langle u_n\rangle_{n\geq 0}$ be a nondegenerate linearly recurrent sequence. Assume

$$u_n := \sum_{j=1}^s P_j(n)\lambda_j^n \qquad \forall n \in \mathbb{N}$$
 (1)

Let $\mathbf{u} = \langle u_n \rangle_{n \geq 0}$ be a nondegenerate linearly recurrent sequence. Assume

$$u_n := \sum_{j=1}^s P_j(n) \lambda_j^n \qquad \forall n \in \mathbb{N}$$
 (1)

Let $\mathbb{K} := \mathbb{Q}(\lambda_1, \ldots, \lambda_s)$.

Let $\mathbf{u}=\langle u_n\rangle_{n\geq 0}$ be a nondegenerate linearly recurrent sequence. Assume

$$u_n := \sum_{j=1}^s P_j(n) \lambda_j^n \qquad \forall n \in \mathbb{N}$$
 (1)

Let $\mathbb{K} := \mathbb{Q}(\lambda_1, \ldots, \lambda_s)$.

For a permutation σ of $\{1,\ldots,s\}$ let $\gamma_j:=\lambda_{\sigma(j)}$.

Let $\mathbf{u} = \langle u_n \rangle_{n \geq 0}$ be a nondegenerate linearly recurrent sequence. Assume

$$u_n := \sum_{j=1}^s P_j(n) \lambda_j^n \qquad \forall n \in \mathbb{N}$$
 (1)

Let $\mathbb{K} := \mathbb{Q}(\lambda_1, \ldots, \lambda_s)$.

For a permutation σ of $\{1,\ldots,s\}$ let $\gamma_j:=\lambda_{\sigma(j)}$.

For a positive integer m let

$$v_{\sigma,m} := \sum_{i=1}^{3} P_j(m) \gamma_j \lambda_j^m.$$
 (2)

Good and bad primes

Good and bad primes

Definition

We say that $P \in [X, 2X]$ is **bad** if there exists:

(i) a nondegenerate LRS ${\bf u}$ given by which is small at level X; i.e.,

$$C_{\mathbf{u}} < \log_6 X$$

- (ii) a permutation σ of $\{1,\ldots,s\}$,
- (iii) a positive integer $m \in [1, X^{1/4}]$,

such that

- (1) The number $v_{\sigma,m}$ shown at (2) is nonzero and
- (2) P divides the numerator of

$$N_{\mathbb{K}/\mathbb{Q}}(v_{\sigma,m}).$$

Counting bad primes

Let $\mathcal{P}_{\mathrm{bad}}(X)$ be the set of bad primes in [X,2X].

Counting bad primes

Let $\mathcal{P}_{\mathrm{bad}}(X)$ be the set of bad primes in [X,2X].

Theorem (L., Ouaknine, Worrell 2025)

We have

$$\#\mathcal{P}_{\mathrm{bad}}(X) < X^{2/3}$$

for all $X > X_0$.

In order to estimate $\#\mathcal{P}_{\mathrm{bad}}(X)$ we need to find out:

- (1) How many numbers of the form (2) are there?
- (2) How large are they?

In order to estimate $\#\mathcal{P}_{\mathrm{bad}}(X)$ we need to find out:

- (1) How many numbers of the form (2) are there?
- (2) How large are they?
- (1) is easy. Since $C_{\mathbf{u}}$ is tiny, there are $X^{o(1)}$ ways of choosing \mathbf{u} .

In order to estimate $\#\mathcal{P}_{\mathrm{bad}}(X)$ we need to find out:

- (1) How many numbers of the form (2) are there?
- (2) How large are they?
- (1) is easy. Since $C_{\mathbf{u}}$ is tiny, there are $X^{o(1)}$ ways of choosing \mathbf{u} .

Given **u**, there are $k! = X^{o(1)}$ ways of choosing σ .

In order to estimate $\#\mathcal{P}_{\mathrm{bad}}(X)$ we need to find out:

- (1) How many numbers of the form (2) are there?
- (2) How large are they?
- (1) is easy. Since $C_{\mathbf{u}}$ is tiny, there are $X^{o(1)}$ ways of choosing \mathbf{u} .

Given **u**, there are $k! = X^{o(1)}$ ways of choosing σ .

There are $X^{1/4}$ ways of choosing m.

In order to estimate $\#\mathcal{P}_{\mathrm{bad}}(X)$ we need to find out:

- (1) How many numbers of the form (2) are there?
- (2) How large are they?
- (1) is easy. Since $C_{\mathbf{u}}$ is tiny, there are $X^{o(1)}$ ways of choosing \mathbf{u} .

Given **u**, there are $k! = X^{o(1)}$ ways of choosing σ .

There are $X^{1/4}$ ways of choosing m.

The norm of each of $v_{\sigma,m}$ is a nonzero rational number of denominator $X^{o(1)}$ and numerator

$$\exp(mX^{o(1)}) = \exp(X^{1/4+o(1)}).$$

In order to estimate $\#\mathcal{P}_{\mathrm{bad}}(X)$ we need to find out:

- (1) How many numbers of the form (2) are there?
- (2) How large are they?
- (1) is easy. Since $C_{\mathbf{u}}$ is tiny, there are $X^{o(1)}$ ways of choosing \mathbf{u} .

Given **u**, there are $k! = X^{o(1)}$ ways of choosing σ .

There are $X^{1/4}$ ways of choosing m.

The norm of each of $v_{\sigma,m}$ is a nonzero rational number of denominator $X^{o(1)}$ and numerator

$$\exp(mX^{o(1)}) = \exp(X^{1/4+o(1)}).$$

Thus, there are $\log N_{\mathbb{K}/\mathbb{Q}}(v_{\sigma,m}) \leq X^{1/4+o(1)}$ possibilities for the prime P.

In order to estimate $\#\mathcal{P}_{\mathrm{bad}}(X)$ we need to find out:

- (1) How many numbers of the form (2) are there?
- (2) How large are they?
- (1) is easy. Since $C_{\mathbf{u}}$ is tiny, there are $X^{o(1)}$ ways of choosing \mathbf{u} .

Given **u**, there are $k! = X^{o(1)}$ ways of choosing σ .

There are $X^{1/4}$ ways of choosing m.

The norm of each of $v_{\sigma,m}$ is a nonzero rational number of denominator $X^{o(1)}$ and numerator

$$\exp(mX^{o(1)}) = \exp(X^{1/4+o(1)}).$$

Thus, there are $\log N_{\mathbb{K}/\mathbb{Q}}(v_{\sigma,m}) \leq X^{1/4+o(1)}$ possibilities for the prime P.

Now we sum up over all the $X^{1/4+o(1)}$ possibilities for (\mathbf{u}, σ, m) getting a bound of $X^{1/2+o(1)}$ on $\#\mathcal{P}_{\mathrm{bad}}(X)$.

Let p_n be the *n*th prime.

Let p_n be the nth prime.

Conjecture (Cramér, Granville)

$$\limsup_{n\to\infty}\frac{p_{n+1}-p_n}{(\log p_n)^2}=\kappa.$$

Let p_n be the *n*th prime.

Conjecture (Cramér, Granville)

There exists κ such that

$$\limsup_{n\to\infty}\frac{p_{n+1}-p_n}{(\log p_n)^2}=\kappa.$$

ullet Cramér believed that $\kappa=1$. This was refuted by Maier.

Let p_n be the *n*th prime.

Conjecture (Cramér, Granville)

$$\limsup_{n\to\infty}\frac{p_{n+1}-p_n}{(\log p_n)^2}=\kappa.$$

- ullet Cramér believed that $\kappa=1$. This was refuted by Maier.
- Granville produced some evidence that $\kappa \geq 2e^{-\gamma} = 1.229...$

Let p_n be the nth prime.

Conjecture (Cramér, Granville)

$$\limsup_{n\to\infty}\frac{p_{n+1}-p_n}{(\log p_n)^2}=\kappa.$$

- ullet Cramér believed that $\kappa=1$. This was refuted by Maier.
- Granville produced some evidence that $\kappa \geq 2e^{-\gamma} = 1.229\ldots$
- The Riemann Hypothesis gives $p_{n+1} p_n = O(\sqrt{p_n} \log p_n)$.

Let p_n be the *n*th prime.

Conjecture (Cramér, Granville)

$$\limsup_{n\to\infty}\frac{p_{n+1}-p_n}{(\log p_n)^2}=\kappa.$$

- Cramér believed that $\kappa = 1$. This was refuted by Maier.
- Granville produced some evidence that $\kappa \geq 2e^{-\gamma} = 1.229\ldots$
- The Riemann Hypothesis gives $p_{n+1} p_n = O(\sqrt{p_n} \log p_n)$.
- Baker, Harman and Pinz showed that $p_{n+1} p_n = O(p_n^{0.525})$.

i. o.

Let p_n be the *n*th prime.

Conjecture (Cramér, Granville)

$$\limsup_{n\to\infty}\frac{p_{n+1}-p_n}{(\log p_n)^2}=\kappa.$$

- ullet Cramér believed that $\kappa=1$. This was refuted by Maier.
- Granville produced some evidence that $\kappa \geq 2e^{-\gamma} = 1.229...$
- The Riemann Hypothesis gives $p_{n+1} p_n = O(\sqrt{p_n} \log p_n)$.
- Baker, Harman and Pinz showed that $p_{n+1} p_n = O(p_n^{0.525})$.
- Ford, Green, Konyagin, Tao and Maynard showed that

$$p_{n+1} - p_n \gg \frac{\log p_n \log \log p_n \log \log \log \log p_n}{\log \log \log p_n}$$

• Well the probability that n is prime is $1/\log n$. So, the probability that it is composite is

$$1 - \frac{1}{\log n}.$$

• Well the probability that n is prime is $1/\log n$. So, the probability that it is composite is

$$1-\frac{1}{\log n}.$$

• So, the probability that $n, n+1, \ldots, n+k-1$ are all composites is, assuming these events are independent,

$$\prod_{j=0}^{k-1} \left(1 - \frac{1}{\log(n+j)}\right) \sim \left(1 - \frac{1}{\log n}\right)^k,$$

provided k is small with respect to n.

• Well the probability that n is prime is $1/\log n$. So, the probability that it is composite is

$$1-\frac{1}{\log n}.$$

• So, the probability that $n, n+1, \ldots, n+k-1$ are all composites is, assuming these events are independent,

$$\prod_{j=0}^{k-1} \left(1 - \frac{1}{\log(n+j)} \right) \sim \left(1 - \frac{1}{\log n} \right)^k,$$

provided k is small with respect to n.

• So, taking $k = |\kappa(\log n)^2|$ with some $\kappa > 1$, this is

$$\left(1 - \frac{1}{\log n}\right)^{\kappa(\log n)^2} = \frac{1}{n^{\kappa}} = o\left(\frac{1}{n}\right)$$

Continuation

Continuation

• So, taking $n \in [X, 2X]$, the probability of all the above happening is

$$o\left(\frac{1}{X}\right)$$
,

but the above interval has length X, so maybe there is no such n in [X,2X] for large X.

Continuation

• So, taking $n \in [X, 2X]$, the probability of all the above happening is

$$o\left(\frac{1}{X}\right)$$
,

but the above interval has length X, so maybe there is no such n in [X,2X] for large X.

• The model is wrong since the events "n is composite" and "n+1 is composite" are not independent (one of them is always even).

A modified Cramér conjecture

A modified Cramér conjecture

Since $\#\mathcal{P}_{\mathrm{bad}}(X) < X^{2/3}$ for $X > X_0$ it follows that asymptotically $\mathcal{P} \setminus \mathcal{P}_{\mathrm{bad}}$ has the same counting function as the primes.

A modified Cramér conjecture

Since $\#\mathcal{P}_{\mathrm{bad}}(X) < X^{2/3}$ for $X > X_0$ it follows that asymptotically $\mathcal{P} \setminus \mathcal{P}_{\mathrm{bad}}$ has the same counting function as the primes.

Let q_n be the *n*the element of $\mathcal{P} \setminus \mathcal{P}_{\text{bad}}$.

Conjecture (Modified Cramér conjecture)

Assume that there exists $\kappa > 0$ such that

$$\limsup_{n\to\infty}\frac{q_{n+1}-q_n}{(\log q_n)^2}=\kappa.$$

Solving the Skolem problem conditionally

Solving the Skolem problem conditionally

The modifed Cramér conjecture implies that there exists an absolute constant n_0 such that a nondegenerate LRS \mathbf{u} has no large zeros $n > n_0$. That is, if $u_n = 0$, then

$$n < \max\{n_0, C_{\mathbf{u}}\}.$$

• Assume the modified Cramér conjecture.

- Assume the modified Cramér conjecture.
- Let \mathbf{u} be a nondegenerate LRS and n be a large zero of it.

- Assume the modified Cramér conjecture.
- Let \mathbf{u} be a nondegenerate LRS and n be a large zero of it.
- If n is large, then $[n \kappa(\log n)^3, n]$ contains at least $\log n$ primes $P \in \mathcal{P} \backslash \mathcal{P}_{\mathrm{bad}}$. Write n = P + m with such P.

- Assume the modified Cramér conjecture.
- Let \mathbf{u} be a nondegenerate LRS and n be a large zero of it.
- If n is large, then $[n \kappa(\log n)^3, n]$ contains at least $\log n$ primes $P \in \mathcal{P} \setminus \mathcal{P}_{bad}$. Write n = P + m with such P.
- Note that $m = O((\log n)^3)$ and such m's are distinct.

- Assume the modified Cramér conjecture.
- Let \mathbf{u} be a nondegenerate LRS and n be a large zero of it.
- If n is large, then $[n \kappa(\log n)^3, n]$ contains at least $\log n$ primes $P \in \mathcal{P} \backslash \mathcal{P}_{\mathrm{bad}}$. Write n = P + m with such P.
- Note that $m = O((\log n)^3)$ and such m's are distinct.
- Reduce the equation $u_n = 0$ modulo P to get

$$u_n = \sum_{i=1}^{s} P_j(m+P)\lambda_j^{P+m} \equiv 0 \pmod{P}.$$

- Assume the modified Cramér conjecture.
- Let \mathbf{u} be a nondegenerate LRS and n be a large zero of it.
- If n is large, then $[n \kappa(\log n)^3, n]$ contains at least $\log n$ primes $P \in \mathcal{P} \setminus \mathcal{P}_{\text{bad}}$. Write n = P + m with such P.
- Note that $m = O((\log n)^3)$ and such m's are distinct.
- Reduce the equation $u_n = 0$ modulo P to get

$$u_n = \sum_{j=1}^{n} P_j(m+P)\lambda_j^{P+m} \equiv 0 \pmod{P}.$$

This implies

$$v_{\sigma,m} \equiv 0 \pmod{P}$$
,

where σ is the Frobenius with respect to P (so $\gamma_j \equiv \lambda_j^P \pmod{P}$).

• Since *P* is good, $v_{\sigma,m} = 0$. Thus,

$$\sum_{j=1}^{s} P_{j}(m)\gamma_{j}\lambda_{j}^{m} = 0.$$

• Since *P* is good, $v_{\sigma,m} = 0$. Thus,

$$\sum_{j=1}^{s} P_j(m) \gamma_j \lambda_j^m = 0.$$

ullet Fixing σ , we get that the nondegenerate LRS ${f v}_{\sigma}=(v_{\sigma,m})$ has

$$(\log n)^{1-o(1)}$$

zeros m.

• Since *P* is good, $v_{\sigma,m} = 0$. Thus,

$$\sum_{j=1}^{s} P_j(m) \gamma_j \lambda_j^m = 0.$$

ullet Fixing σ , we get that the nondegenerate LRS ${f v}_{\sigma}=(v_{\sigma,m})$ has

$$(\log n)^{1-o(1)}$$

zeros m.

• However, this can have at most $\exp_2(O(k)) = (\log n)^{o(1)}$ zeros.

• Since *P* is good, $v_{\sigma,m} = 0$. Thus,

$$\sum_{j=1}^{s} P_j(m) \gamma_j \lambda_j^m = 0.$$

ullet Fixing σ , we get that the nondegenerate LRS ${f v}_{\sigma}=(v_{\sigma,m})$ has

$$(\log n)^{1-o(1)}$$

zeros m.

- However, this can have at most $\exp_2(O(k)) = (\log n)^{o(1)}$ zeros.
- Putting it together we get n = O(1).

