Recurrence, transcendence, and Diophantine approximation Leiden, 17/07/25

On the P(t)-adic Littlewood Conjecture

Faustin ADICEAM

Outline

- Littlewood-type Problems
- 2 The Main Result
- Number Walls
- Sketch of the Proof of the Main Result

Littlewood's Conjecture

Notation :

$$\langle \cdot \rangle = \operatorname{dist}(\cdot, \mathbb{Z}).$$

Conjecture (Littlewood, c. 1930)

For all
$$(\alpha, \beta) \in \mathbb{R}^2$$
,

$$\inf_{q\geq 1} q \cdot \langle q\alpha \rangle \cdot \langle q\beta \rangle = 0.$$

Figure – John Edensor Littlewood (1885 – 1977)

The *p*-adic Littlewood Conjecture

Recall : According to the Littlewood conjecture, $\inf_{q\geq 1} q \cdot \langle q\alpha \rangle \cdot \langle q\beta \rangle = 0$ for all $(\alpha,\beta) \in \mathbb{R}^2$.

Conjecture (De Mathan & Teulié, 2004)

For all $\alpha \in \mathbb{R}$ and all prime number p,

$$\inf_{q\geq 1} q\cdot |q|_p\cdot \langle q\alpha\rangle = 0,$$

where $|q|_p = p^{-k}$ if $q = p^k n$ with $p^{k+1} \nmid n$. Equivalently,

$$\inf_{n\geq 1, k\geq 0} n \cdot \langle np^k \alpha \rangle = 0.$$

The *p*-adic Littlewood Conjecture

Recall : According to the Littlewood conjecture, $\inf_{q\geq 1} q \cdot \langle q\alpha \rangle \cdot \langle q\beta \rangle = 0$ for all $(\alpha,\beta) \in \mathbb{R}^2$.

Conjecture (De Mathan & Teulié, 2004)

For all $\alpha \in \mathbb{R}$ and all prime number p,

$$\inf_{q\geq 1} q\cdot |q|_p\cdot \langle q\alpha\rangle = 0,$$

where $|q|_p = p^{-k}$ if $q = p^k n$ with $p^{k+1} \nmid n$. Equivalently,

$$\inf_{n\geq 1, k\geq 0} n \cdot \langle np^k \alpha \rangle = 0.$$

Towards an analogous theory over function fields

• Let α be a real number (e.g., $\alpha = 567.789908782...$) :

$$\alpha = \underbrace{b_{-n_0} \cdots b_{-1} b_0}_{\text{integer part}} \cdot \underbrace{b_1 b_2 b_3 \cdots}_{\text{fractional part}} = \underbrace{\sum_{k=0}^{n_0} b_{-k} 10^k}_{\text{integer part}} + \underbrace{\sum_{k=1}^{\infty} \frac{b_k}{10^k}}_{\text{fractional part}}.$$

• Let \mathbb{K} be a finite field and let $A(t) \in \mathbb{K}\left(\left(t^{-1}\right)\right)$ be a Laurent series :

$$A(t) = \sum_{k=0}^{n_0} b_{-k} t^k + \sum_{k=1}^{\infty} \frac{b_k}{t^k}$$
polynomial part fractional part

Real case	Functional case
	$\mathbb{K}\left[t ight]$
prime p	$P(t) \in \mathbb{K}[t]$ irreducible
	$\mathbb{K}\left(t ight)$
	$\mathbb{K}\left(\left(t^{-1}\right)\right)$

Towards an analogous theory over function fields

• Let α be a real number (e.g., $\alpha = 567.789908782...$) :

$$\alpha = \underbrace{b_{-n_0} \cdots b_{-1} b_0}_{\text{integer part}} \cdot \underbrace{b_1 b_2 b_3 \cdots}_{\text{fractional part}} = \underbrace{\sum_{k=0}^{n_0} b_{-k} 10^k}_{\text{integer part}} + \underbrace{\sum_{k=1}^{\infty} \frac{b_k}{10^k}}_{\text{fractional part}}.$$

• Let \mathbb{K} be a finite field and let $A(t) \in \mathbb{K}((t^{-1}))$ be a Laurent series :

$$A(t) = \sum_{k=0}^{n_0} b_{-k} t^k + \sum_{k=1}^{\infty} \frac{b_k}{t^k}.$$
polynomial part fractional part

Real case	Functional case
	$\mathbb{K}\left[t ight]$
prime p	$P(t) \in \mathbb{K}[t]$ irreducible
	$\mathbb{K}\left(t\right)$
	$\mathbb{K}\left(\left(t^{-1}\right)\right)$

Towards an analogous theory over function fields

• Let α be a real number (e.g., $\alpha = 567.789908782...$) :

$$\alpha = \underbrace{b_{-n_0} \cdots b_{-1} b_0}_{\text{integer part}} \cdot \underbrace{b_1 b_2 b_3 \cdots}_{\text{fractional part}} = \underbrace{\sum_{k=0}^{n_0} b_{-k} 10^k}_{\text{integer part}} + \underbrace{\sum_{k=1}^{\infty} \frac{b_k}{10^k}}_{\text{fractional part}}.$$

• Let $\mathbb K$ be a finite field and let $A(t) \in \mathbb K\left(\left(t^{-1}\right)\right)$ be a Laurent series :

$$A(t) = \sum_{k=0}^{n_0} b_{-k} t^k + \sum_{k=1}^{\infty} \frac{b_k}{t^k}.$$
polynomial part fractional part

Real case	Functional case
\mathbb{Z}	$\mathbb{K}\left[t ight]$
prime p	$P(t) \in \mathbb{K}[t]$ irreducible
\mathbb{Q}	$\mathbb{K}\left(t\right)$
\mathbb{R}	$\mathbb{K}\left(\left(t^{-1}\right)\right)$

Littlewood conjectures over function fields

Definition (Norm of a Laurent series)

Given a Laurent series

$$A(t) = b_{-n_0}t^{n_0} + \cdots + b_{-1}t + b_0 + \frac{b_1}{t} + \cdots + \frac{b_k}{t^k} + \cdots,$$

set $|A| = 2^{-s}$, where $s \ge -n_0$ is the smallest integer such that $b_s \ne 0$.

 By abuse of notation, denote by ⟨A⟩ the fractional part of A and set dist (A, K[t]) = |⟨A⟩|.

	$A,B\in\mathbb{K}\left(\left(t^{-1} ight) ight)$

Littlewood conjectures over function fields

Definition (Norm of a Laurent series)

Given a Laurent series

$$A(t) = b_{-n_0}t^{n_0} + \cdots + b_{-1}t + b_0 + \frac{b_1}{t} + \cdots + \frac{b_k}{t^k} + \cdots,$$

set $|A| = 2^{-s}$, where $s \ge -n_0$ is the smallest integer such that $b_s \ne 0$.

 By abuse of notation, denote by ⟨A⟩ the fractional part of A and set dist (A, K[t]) = |⟨A⟩|.

	$A,B\in\mathbb{K}\left(\left(t^{-1} ight) ight)$

Littlewood conjectures over function fields

Definition (Norm of a Laurent series)

Given a Laurent series

$$A(t) = b_{-n_0}t^{n_0} + \cdots + b_{-1}t + b_0 + \frac{b_1}{t} + \cdots + \frac{b_k}{t^k} + \cdots,$$

set $|A| = 2^{-s}$, where $s \ge -n_0$ is the smallest integer such that $b_s \ne 0$.

 By abuse of notation, denote by ⟨A⟩ the fractional part of A and set dist (A, K[t]) = |⟨A⟩|.

Conjectures	$lpha,eta\in\mathbb{R}$	$A,B \in \mathbb{K}\left(\left(t^{-1} ight) ight)$
Classical Littlewood	$\inf_{q\in\mathbb{Z}\setminus\{0\}} q \cdot \langle qlpha angle \cdot \langle qeta angle =0$	$\inf_{Q \in \mathbb{K}[t] \setminus \{0\}} Q \cdot \langle QA \rangle \cdot \langle QB \rangle = 0$
<i>p</i> –adic Littlewood	$\inf_{\substack{n \in \mathbb{Z} \setminus \{0\} \\ k \ge 0}} n \cdot \langle p^k n \alpha \rangle = 0$	$\inf_{\substack{N \in \mathbb{K}[t] \setminus \{0\} \\ k \ge 0}} N \cdot \langle P(t)^k NA \rangle = 0$

The state of the art

Hausdorff dimension of the set NOT satisfying the conjecture :

Conjectures	over ℝ	over $\mathbb{K}\left(\left(t^{-1}\right)\right)$
Classical Littlewood	0 (E–Ka–L, 2006)	??? (E–L–M, 2020)
<i>p</i> –adic Littlewood	0 (E-KI, 2007)	??? (E–L–M, 2020)

E: Einsiedler, Ka: Katok, L: Lindenstrauss, KI: Kleinbock, M: Mohammadi

Figure - Manfred Einsiedler, Anatol Katok, Dmitri Kleinbock, Elon Lindenstrauss & Amir Mohammadi

The state of the art (bis)

Hausdorff dimension of the set NOT satisfying the conjecture :

Conjectures	over ℝ	over $\mathbb{K}\left(\left(t^{-1}\right)\right)$
Classical Littlewood	0 (E–Ka–L, 2006)	??? (E–L–M, 2020)
<i>p</i> –adic Littlewood	0 (E-KI, 2007)	??? (E–L–M, 2020)

 $E: Einsiedler, \, Ka: Katok, \, L: Lindenstrauss, \, KI: Kleinbock, \, M: Mohammadi\\$

Validity of the conjectures :

Conjectures	over $\mathbb R$	over $\mathbb{K}\left(\left(t^{-1}\right)\right)$
Classical Littlewood	???	???
<i>p</i> –adic Littlewood	???	false when $char(\mathbb{K})\equiv 3\pmod{4}$

Outline

- Littlewood-type Problems
- 2 The Main Result
- Number Walls
- Sketch of the Proof of the Main Result

Statement of the main result

Theorem (A., Badziahin, —)

Let $(p_n)_{n\geq 1}\in\{-1,1\}^{\mathbb{N}}$ be the paperfolding sequence, let $l\equiv 3\pmod 4$ be a prime and let $P(t)\in\mathbb{F}_l[t]$ be irreducible. Then, the Laurent series

$$\Pi_P = \sum_{n=1}^{\infty} \frac{p_n}{P(t)^n} \in \mathbb{F}_l\left(\left(t^{-1}\right)\right)$$

is a counterexample to the P(t)–adic Littlewood conjecture $\mathit{over}\,\mathbb{K} = \mathbb{F}_t$:

$$\inf_{N \in \mathbb{K}[t] \setminus \{0\}} |N| \cdot \left| \langle P(t)^k N \Pi \rangle \right| \; = \; 2^{-4 \cdot \deg P} > 0.$$

Figure – Dzmitry Badziahin (University of Sydney)

Statement of the main result

Theorem (A., Badziahin, —)

Let $(p_n)_{n\geq 1}\in\{-1,1\}^{\mathbb{N}}$ be the paperfolding sequence, let $l\equiv 3\pmod 4$ be a prime and let $P(t)\in\mathbb{F}_l[t]$ be irreducible. Then, the Laurent series

$$\Pi_P = \sum_{n=1}^{\infty} \frac{p_n}{P(t)^n} \in \mathbb{F}_I\left(\left(t^{-1}\right)\right)$$

is a counterexample to the P(t)-adic Littlewood conjecture over $\mathbb{K} = \mathbb{F}_l$:

$$\inf_{N \in \mathbb{K}[t] \setminus \{0\}} |N| \cdot \left| \langle P(t)^k N \Pi \rangle \right| \; = \; 2^{-4 \cdot \deg P} > 0.$$

Figure – Dzmitry Badziahin (University of Sydney)

Statement of the main result

Theorem (A., Badziahin, —)

Let $(p_n)_{n\geq 1}\in\{-1,1\}^{\mathbb{N}}$ be the paperfolding sequence, let $I\equiv 3\pmod 4$ be a prime and let $P(t)\in\mathbb{F}_I[t]$ be irreducible. Then, the Laurent series

$$\Pi_P = \sum_{n=1}^{\infty} \frac{p_n}{P(t)^n} \in \mathbb{F}_I\left(\left(t^{-1}\right)\right)$$

is a counterexample to the P(t)-adic Littlewood conjecture over $\mathbb{K} = \mathbb{F}_l$:

$$\inf_{N\in\mathbb{K}[t]\setminus\{0\}}|N|\cdot\left|\langle P(t)^kN\Pi\rangle\right|\ =\ 2^{-4\cdot\deg P}>0.$$

• (Robertson, —): it is enough to prove the case P(t) = t.

The paperfolding sequence

 The paperfolding sequence (p_n)_{n≥0} can be obtained by discrete self-similarity:

Outline

- 1 Littlewood-type Problems
- 2 The Main Result
- Number Walls
- Sketch of the Proof of the Main Result

Reduction of the problem to the existence of singular matrices

Let

$$A = \sum_{n=1}^{\infty} b_n t^{-n}$$

be a Laurent series and let

$$N = \theta_h t^h + \dots + \theta_1 t + \theta_0$$

be a polynomial with degree $h \ge 1$ (i.e. $|N| = 2^h$).

• Given $l \ge 1$, asking that $|N| \cdot |\langle t^k NA \rangle| < 2^{-r}$, i.e.

$$\left| \langle t^k NA \rangle \right| < 2^{-(r+h)},$$

amounts to imposing that a certain number of the coefficients of the Laurent series $t^k NA$ should vanish. Explicitly, one requires that

$$H_A\theta=\mathbf{0}$$
.

where $H_A = H_A(k, r, h)$ is some square Hankel matrix formed from the coefficients of A, and where $\theta = (\theta_h, \dots, \theta_1, \theta_0)^T \in \mathbb{K}^{h+1} \setminus \{0\}$.

Reduction of the problem to the existence of singular matrices

Let

$$A = \sum_{n=1}^{\infty} b_n t^{-n}$$

be a Laurent series and let

$$N = \theta_h t^h + \dots + \theta_1 t + \theta_0$$

be a polynomial with degree $h \ge 1$ (i.e. $|N| = 2^h$).

• Given $l \ge 1$, asking that $|N| \cdot |\langle t^k NA \rangle| < 2^{-r}$, i.e.

$$\left|\langle t^k NA \rangle \right| < 2^{-(r+h)},$$

amounts to imposing that a certain number of the coefficients of the Laurent series $t^k NA$ should vanish. Explicitly, one requires that

$$H_A\theta=\mathbf{0}$$
.

where $H_A = H_A(k, r, h)$ is some square Hankel matrix formed from the coefficients of A, and where $\theta = (\theta_h, \dots, \theta_1, \theta_0)^T \in \mathbb{K}^{h+1} \setminus \{\mathbf{0}\}.$

Reduction of the problem to the existence of singular matrices

Let

$$A = \sum_{n=1}^{\infty} b_n t^{-n}$$

be a Laurent series and let

$$N = \theta_h t^h + \dots + \theta_1 t + \theta_0$$

be a polynomial with degree $h \ge 1$ (i.e. $|N| = 2^h$).

• Given $l \ge 1$, asking that $|N| \cdot |\langle t^k NA \rangle| < 2^{-r}$, i.e.

$$\left|\langle t^k NA \rangle \right| < 2^{-(r+h)},$$

amounts to imposing that a certain number of the coefficients of the Laurent series $t^k NA$ should vanish. Explicitly, one requires that

$$H_A \theta = \mathbf{0},$$

where $H_A = H_A(k, r, h)$ is some square Hankel matrix formed from the coefficients of A, and where $\theta = (\theta_h, \dots, \theta_1, \theta_0)^T \in \mathbb{K}^{h+1} \setminus \{\mathbf{0}\}.$

Reduction of the problem to the existence of singular matrices (bis)

• From properties of Hankel matrices, the condition $|N| \cdot |\langle t^k NA \rangle| < 2^{-r}$ amounts to asking that there should exist r nested singular submatrices inside the infinite Hankel matrix of the sequence $(b_n)_{n\geq 1}$.



The Number Wall of a sequence

Definition

The Number Wall of the sequence $\mathcal{B}=(b_n)_{n\geq 1}\in\mathbb{K}^\mathbb{N}$ is an infinite matrix $W(\mathcal{B})=(w_{mn}(\mathcal{B}))_{m\geq 0,n\in\mathbb{Z}}$ whose $(m,n)^{th}$ coefficient is (up to the sign) the Hankel determinant

$$w_{mn}(\mathcal{B}) = (-1)^{m(m-1)/2} \cdot \begin{vmatrix} b_{n-m} & \cdots & b_k & \cdots & b_n \\ \vdots & \ddots & & \ddots & \vdots \\ b_k & & b_n & & b_l \\ \vdots & \ddots & & \ddots & \vdots \\ b_n & \cdots & b_l & \cdots & b_{n+m} \end{vmatrix}.$$

(In particular, when m = 0, $w_{0,n}(\mathcal{B}) = b_n$ for all $n \in \mathbb{Z}$.)

The Number Wall of the paperfolding sequence over \mathbb{F}_3

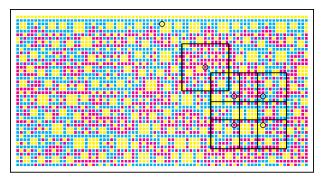


Figure – The Number Wall of the paperfolding sequence over \mathbb{F}_3 . In yellow (resp. in blue, in pink) the determinants equal to 0 (resp. to 1, to 2).

 From the so-called Desnanot-Jacobi determinental identity, the zero coefficients in this Number Wall can only appear inside squares.

The Number Wall of the paperfolding sequence over \mathbb{F}_3

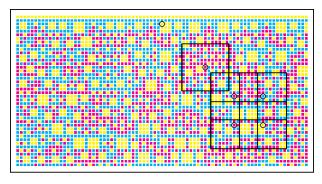


Figure – The Number Wall of the paperfolding sequence over \mathbb{F}_3 . In yellow (resp. in blue, in pink) the determinants equal to 0 (resp. to 1, to 2).

 From the so-called Desnanot-Jacobi determinental identity, the zero coefficients in this Number Wall can only appear inside squares.

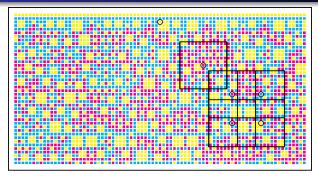


Figure – The Number Wall of the paperfolding sequence over \mathbb{F}_3 . In yellow (resp. in blue, in pink) the determinants equal to 0 (resp. to 1, to 2).

Reformulation of the problem :

$$\inf_{\substack{N \in \mathbb{K}[t] \setminus \{0\} \\ k \geq 0}} |N| \cdot \left| \langle t^k N \Pi \rangle \right| \ = \ 2^{-4} \iff \begin{cases} \text{there exists no } 4 \times 4 \text{ zero square} \\ \text{and there exists one such } 3 \times 3 \text{ square}. \end{cases}$$

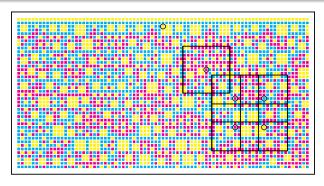


Figure – The Number Wall of the paperfolding sequence over \mathbb{F}_3 . In yellow (resp. in blue, in pink) the determinants equal to 0 (resp. to 1, to 2).

- Computer-assisted proof (A., Nesharim & Lunnon, 2021) :
 - Tile a finite portion of the Number Wall of the paperfolding sequence;
 - Consider the infinite matrix given by this tiling rules:
 - Show this is a Number Wall.

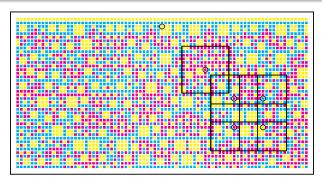


Figure – The Number Wall of the paperfolding sequence over \mathbb{F}_3 . In yellow (resp. in blue, in pink) the determinants equal to 0 (resp. to 1, to 2).

- Computer–assisted proof (A., Nesharim & Lunnon, 2021) :
 - Tile a finite portion of the Number Wall of the paperfolding sequence;
 - Consider the infinite matrix given by this tiling rules;
 - Show this is a Number Wall

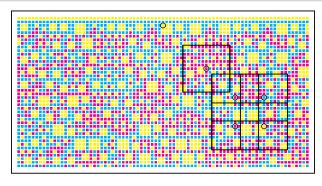


Figure – The Number Wall of the paperfolding sequence over \mathbb{F}_3 . In yellow (resp. in blue, in pink) the determinants equal to 0 (resp. to 1, to 2).

- Computer-assisted proof (A., Nesharim & Lunnon, 2021) :
 - Tile a finite portion of the Number Wall of the paperfolding sequence;
 - Consider the infinite matrix given by this tiling rules;
 - Show this is a Number Wall.

Implementing the Computer-assisted Proof

- The t-adic (hence the P(t)-adic) Littlewood Conjecture fails :
 - over F₃ (A., Nesharim & Lunnon, 2021);
 - over \mathbb{F}_7 and \mathbb{F}_{11} (Robertson, 2025).

Figure - Erez Nesharim & Fred Lunnon

Coniecture

The Number Wall of a(n one-dimensional) automatic sequence is a (two-dimensional) automatic sequence.

Implementing the Computer-assisted Proof

- The t-adic (hence the P(t)-adic) Littlewood Conjecture fails :
 - \blacksquare over \mathbb{F}_3 (A., Nesharim & Lunnon, 2021);
 - \blacksquare over \mathbb{F}_7 and \mathbb{F}_{11} (Robertson, 2025).

Figure - Erez Nesharim & Fred Lunnon

Conjecture

The Number Wall of a(n one-dimensional) automatic sequence is a (two-dimensional) automatic sequence.

Outline

- Littlewood-type Problems
- 2 The Main Result
- Number Walls
- 4 Sketch of the Proof of the Main Result

Hankel Matrices

• Let H(m, n) be the Hankel determinant

$$H(m,n) = \begin{vmatrix} p_m & \cdots & p_k & \cdots & p_{m+n-1} \\ \vdots & \ddots & & \ddots & \vdots \\ p_k & & p_n & & p_l \\ \vdots & \ddots & & \ddots & \vdots \\ p_{m+n-1} & \cdots & p_l & \cdots & p_{m+2n-1} \end{vmatrix}.$$

For instance :

$$H(2,5) = \begin{vmatrix} -1 & p_1 & 1 & p_2 & -1 \\ p_1 & 1 & p_2 & -1 & p_3 \\ 1 & p_2 & -1 & p_3 & 1 \\ p_2 & -1 & p_3 & 1 & p_4 \\ -1 & p_3 & 1 & p_4 & -1 \end{vmatrix}.$$

Hankel Matrices

• Let H(m, n) be the Hankel determinant

$$H(m,n) = \begin{vmatrix} p_m & \cdots & p_k & \cdots & p_{m+n-1} \\ \vdots & \ddots & & \ddots & \vdots \\ p_k & & p_n & & p_l \\ \vdots & \ddots & & \ddots & \vdots \\ p_{m+n-1} & \cdots & p_l & \cdots & p_{m+2n-1} \end{vmatrix}.$$

For instance :

$$H(2,5) = \begin{vmatrix} -1 & p_1 & 1 & p_2 & -1 \\ p_1 & 1 & p_2 & -1 & p_3 \\ 1 & p_2 & -1 & p_3 & 1 \\ p_2 & -1 & p_3 & 1 & p_4 \\ -1 & p_3 & 1 & p_4 & -1 \end{vmatrix}.$$

The key recurrence relations

Theorem

There exists sequences $(G(m, n))_{m,n}$ and $(F(m, n))_{m,n}$ such that :

• H(2m+1,2n)

$$= (-1)^n \cdot (H(m,n) \cdot H(m+1,n) + G(m,n-1) \cdot G(m+1,n-1));$$

• H(2m+1,2n-1)

$$= H(m, n) \cdot H(m+1, n-1) - G(m, n-1) \cdot G(m+1, n-2);$$

- $H(2m,2n) = -((H(m,n))^2 + (G(m,n-1))^2);$
- $H(2m,2n-1) = \pm (F(m,n-1))^2$.

The key recurrence relations

Theorem

There exists sequences $(G(m, n))_{m,n}$ and $(F(m, n))_{m,n}$ such that :

•
$$H(2m+1,2n)$$

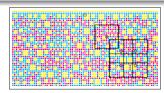
= $(-1)^n \cdot (H(m,n) \cdot H(m+1,n) + G(m,n-1) \cdot G(m+1,n-1));$

•
$$H(2m+1,2n-1)$$

= $H(m,n) \cdot H(m+1,n-1) - G(m,n-1) \cdot G(m+1,n-2);$

•
$$H(2m,2n) = -((H(m,n))^2 + (G(m,n-1))^2);$$

•
$$H(2m,2n-1) = \pm (F(m,n-1))^2$$
.



The key recurrence relations

Theorem

There exists sequences $(G(m, n))_{m,n}$ and $(F(m, n))_{m,n}$ such that :

- H(2m+1,2n)= $(-1)^n \cdot (H(m,n) \cdot H(m+1,n) + G(m,n-1) \cdot G(m+1,n-1));$
- H(2m+1,2n-1)= $H(m,n) \cdot H(m+1,n-1) - G(m,n-1) \cdot G(m+1,n-2);$
- $H(2m,2n) = -((H(m,n))^2 + (G(m,n-1))^2);$
- $H(2m,2n-1) = (F(m,n-1))^2$.
 - Since -1 is not a quadratic residue modulo $l \equiv 3 \pmod{4}$,

$$(H(2m,2n) \equiv 0 \pmod{l}) \Longrightarrow (H(m,n) \equiv 0 \pmod{l} \& G(m,n-1) \equiv 0 \pmod{l})$$

(otherwise $(G(m,n-1) \cdot H(m,n)^{-1})^2 \equiv -1 \pmod{l}$ — contradiction.)

Step 1: The recurrence relations imply that :

- A zero square with length $r \ge 2$, say W(2m, 2n), arises from one with smaller index, say W(m, n);
- If the smaller one W(m,n) has sidelength $r \ge 2$, then the larger one W(2m,2n) has length 2r-3.

- it boils down to to showing that the denominators of the convergents of (a family derived from) the paperfolding Laurent series $\Pi = \sum_{n=1}^{\infty} p_n \cdot t^{-n} \text{ are never divisible by } t^2 + 1.$
- Ultimately true because -1 is not a quadratic residue modulo / ≡ 3 (mod 4).

Step 1 : The recurrence relations imply that :

- A zero square with length $r \ge 2$, say W(2m, 2n), arises from one with smaller index, say W(m, n);
- If the smaller one W(m,n) has sidelength $r \ge 2$, then the larger one W(2m,2n) has length 2r-3.

- it boils down to to showing that the denominators of the convergents of (a family derived from) the paperfolding Laurent series $\Pi = \sum_{n=1}^{\infty} p_n \cdot t^{-n} \text{ are never divisible by } t^2 + 1.$
- Ultimately true because -1 is not a quadratic residue modulo / ≡ 3 (mod 4).

Step 1: The recurrence relations imply that :

- A zero square with length $r \ge 2$, say W(2m, 2n), arises from one with smaller index, say W(m, n);
- If the smaller one W(m, n) has sidelength $r \ge 2$, then the larger one W(2m, 2n) has length 2r 3.

- it boils down to to showing that the denominators of the convergents of (a family derived from) the paperfolding Laurent series $\Pi = \sum_{n=1}^{\infty} p_n \cdot t^{-n} \text{ are never divisible by } t^2 + 1.$
- Ultimately true because -1 is not a quadratic residue modulo / ≡ 3 (mod 4).

Step 1 : The recurrence relations imply that :

- A zero square with length $r \ge 2$, say W(2m, 2n), arises from one with smaller index, say W(m, n);
- If the smaller one W(m,n) has sidelength $r \ge 2$, then the larger one W(2m,2n) has length 2r-3.

- it boils down to to showing that the denominators of the convergents of (a family derived from) the paperfolding Laurent series $\Pi = \sum_{n=1}^{\infty} p_n \cdot t^{-n} \text{ are never divisible by } t^2 + 1.$
- Ultimately true because -1 is not a quadratic residue modulo / ≡ 3 (mod 4).

The P(t)-adic Littlewood Conjecture in other characteristics

Recall the definition of the paperfolding sequence :

Conjecture (Robertson, 2025)

Let l be an odd prime and let s be the largest power of 2 dividing l-1. Then the sequence obtained from the above by applying the block substitutions

$$1 \mapsto 1, 2, \dots, s$$
$$-1 \mapsto -1, -2, \dots, -s$$

fails the P(t)-adic Littlewood Conjecture over any field \mathbb{K} s.t. $char(\mathbb{K}) = I$.

 when s = 1, I ≡ 3 (mod 4) and the sequence is the paperfolding sequence.

The P(t)-adic Littlewood Conjecture in other characteristics

Recall the definition of the paperfolding sequence :

Conjecture (Robertson, 2025)

Let l be an odd prime and let s be the largest power of 2 dividing l-1. Then the sequence obtained from the above by applying the block substitutions

$$1 \mapsto 1, 2, \dots, s$$
$$-1 \mapsto -1, -2, \dots, -s$$

fails the P(t)-adic Littlewood Conjecture over any field \mathbb{K} s.t. $char(\mathbb{K}) = I$.

 Robertson (2025): the conjecture is true when / = 5 (through the computer-assisted method).

The P(t)-adic Littlewood Conjecture in other characteristics

Recall the definition of the paperfolding sequence :

Conjecture (Robertson, 2025)

Let l be an odd prime and let s be the largest power of 2 dividing l-1. Then the sequence obtained from the above by applying the block substitutions

$$1 \mapsto 1, 2, \dots, s$$
$$-1 \mapsto -1, -2, \dots, -s$$

fails the P(t)-adic Littlewood Conjecture over any field \mathbb{K} s.t. $char(\mathbb{K}) = I$.

• No clear understanding of the case $char(\mathbb{K}) = 2$.

Merci de votre attention!

