

MPI MiS mini-course: Hodge theory and periods of varieties

Exercise set 2

Prepared by Avi Kulkarni

Numbered theorems and exercises are with reference to [1].

Ex. A Complete the proof of Theorem 1.2.1.

1. Let C_t be the family of hyperelliptic curves over $\mathbb{A}_{\mathbb{C}}^1 := \text{Spec } \mathbb{C}$ defined by

$$C_t: y^2 = x(x - t)(x^3 + 10^5).$$

- (a) Compute the variety $\Delta \subseteq \mathbb{A}_{\mathbb{C}}^1$ of t such that C_t is singular. What is the genus of C_t , for $t \notin \Delta$?
- (b) Use the sage¹ function `C.period_matrix()` to compute the period matrix of C_t , for a given $t \notin \Delta$. Examples and source code available here:
<https://github.com/nbruin/examplesNumericalEndomorphisms>.
- (c) Compute the genus of the normalization of C_0 . Compute the Riemann matrix.
- (d) Experiment with computing Riemann matrices as $t \rightarrow 0$.
- (e) Can you find a matrix in the integral symplectic group $\text{Sp}(4, \mathbb{Z})$ to confirm your suspicions?

2. Let \mathcal{E}_t be the family of elliptic curves defined by

$$\mathcal{E}_t: y^2 = w^3 + (t^2 + t + 1)w^2 + (t^6 + t).$$

Show that the total space is smooth. Show that the fibre \mathcal{E}_0 is singular. Compute the monodromy operator around $t = 0$.

3. Exercise 1.2.7.

Show that if the module A has a Hodge structure of weight n and the module B has one of weight m , the module $\text{Hom}(A, B)$ inherits a Hodge structure of weight $m - n$ by setting

$$\text{Hom}(A, B)^{i,j} := \{f: A \rightarrow B : f(A^{p,q}) \subseteq B^{p+i, q+j}\}.$$

Show that this is in agreement with our definition for the Hodge structure on the dual of A , thereby showing that this indeed defines a Hodge structure of the asserted weight.

References

[1] James Carlson, Stefan Müller-Stach, and Chris Peters, *Period mappings and period domains*, Cambridge Studies in Advanced Mathematics, vol. 168, Cambridge University Press, Cambridge, 2017. Second edition of [MR2012297]. MR3727160

¹Version 8.4 or later