

MPI MiS mini-course: Hodge theory and periods of varieties

Exercise set 1

Prepared by Avi Kulkarni

Numbered theorems and exercises are with reference to [1].

Ex. A Finish the technical details of the proof from lecture. i.e, For the ω_λ, ρ, U from the “Derivative of the period map section”, show

$$\int_U d\left(\frac{\rho\omega}{y}\right) = - \int_{|y|=\frac{\epsilon}{4}} \frac{\rho\omega}{y}.$$

1. Exercise 1.1.7.

A holomorphic one-form on a Riemann surface is a differential one-form which is locally given by $f(z)dz$, where z is a local holomorphic coordinate. Show that such a form is closed. Formulate and investigate the analogous assertion(s) for holomorphic forms on a complex manifold of complex dimension 2.

2. Exercise 1.1.10.

Let S be a Riemann surface, and let $A \subseteq S$ be a nonempty finite set. Show that there is an exact sequence

$$0 \longrightarrow H^1(S) \longrightarrow H^1(S - A) \longrightarrow H^0(A) \longrightarrow H^0(S) \longrightarrow 0$$

Note that elements of $H^0(A)$ are linear functionals on the vector space spanned by the points of A . They can be viewed as the pointwise residue as defined previously, and they can be combined to form the globally defined map res . Your argument should show that the above sequence is defined on the level of integral cohomology.

3. Exercise 1.1.11.

Consider the degeneration of elliptic curves \mathcal{E}_t defined by $y^2 = x^3 - t$. Find all values of t for which \mathcal{E}_t is singular. By drawing a series of pictures of branch cuts, show that the monodromy transformation for $t = 0$ has order six, and find the corresponding matrix.

4. Exercise 1.1.12.

Let $\{\mathcal{E}_t\}$ be a family of elliptic curves with just two singular fibers, one at $t = 0$, the other at $t = \infty$. Show that the complex structure of \mathcal{E}_t does not vary.

References

[1] James Carlson, Stefan Müller-Stach, and Chris Peters, *Period mappings and period domains*, Cambridge Studies in Advanced Mathematics, vol. 168, Cambridge University Press, Cambridge, 2017. Second edition of [MR2012297]. MR3727160